MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge IGCSE – October/November 2015	0580	22

Abbreviations

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Mark	Part Marks
1	17	1	
2	Parallelogram	1	
3	694 or 694.4[4]	2	M1 for 950 ÷ 1.368
4	5.83 or 5.830 to 5.831	2	M1 for $\sqrt{(-3)^2 + 5^2}$
5	262 or 261.7 to 261.83	2	M1 for $\frac{1}{2} \times \frac{4}{3} \pi \times 5^3$ If zero scored SC1 for final answer 524 or 523.5 to 523.7
6 (a) (b)		1	
7	$\begin{pmatrix} 11 & -8 \\ -6 & 8 \end{pmatrix}$	2	B1 for two correct elements
8	3826 or 3826.38	2	M1 for $8000 \times \left(1 - \frac{10}{100}\right)^7$ oe
9	0.3	2	M1 for $\frac{k \times 50000 \times 50000}{100000 \times 100000}$ oe If zero scored SC1 for figs 3
10	54	3	M2 for $14.4 \times \frac{15}{4}$ oe or M1 for $14.4 \div 4$ or $\frac{4}{15}$ associated with 14.4 If zero scored SC1 for final answer 19.6[4]

Page 3	Mark Sch	neme		Syllabus	Paper	
	Cambridge IGCSE – October/November 2015			0580	22	
11	6.24 or 6.244 to 6.245	3	M2 for $\sqrt{8^2 - 5^2}$			
			or M1 for $8^2 = 5^2 + x^2$ or	better		
12	$2\frac{3}{12}$ or $1\frac{15}{12}$ or $\frac{27}{12}$ or $\frac{9 \times 3}{4 \times 3}$	M1	Accept any correct conversion with common denominator $12k$			
	<i>their</i> $\left(\frac{27}{12} - \frac{11}{12} = \frac{16}{12}\right)$ oe	M1	Correct resolving of <i>their</i> subtraction with denominator $12k$ showing full working			
	$1\frac{1}{3}$ or $\frac{4}{3}$ cao	A1	Working and then simplified	then simplified answer must both b		
13	8.12 or 8.118	3	M2 for $\frac{12.4}{\sin 74} \times \sin 39$ or M1 for implicit version $\frac{\sin 39}{y} = \frac{\sin 74}{12.4}$ oe			
14	2500 nfww	3	M2 for $2475 \div \left(1 - \frac{1}{100}\right)$	oe		
			or M1 for 2475 associate			
15 (a)	(3w+10)(3w-10) final answer	1				
(b)	(m+n)(p-6q) oe final answer	2	B1 for $p(m+n) - 6q(m+n) - 6q(m+n$			
16	36.8 or 36.80 to 36.81	3	M1 for $\frac{26}{360} \times 2 \times \pi \times 15$			
			M1 for $2 \times 15 + a$ term in	volving π		
17	175	3	M1 for $y = k(x-1)^2$ oe			
			A1 for $k = 7$			
			or M2 for $\frac{63}{(4-1)^2} = \frac{y}{(6-x)^2}$	$\overline{1}^{2}$ oe		
18	16.2	3	M1 for two of 2.35, 5.75, or $2 \times (5.8 - 0.05 + 2.4)$		een	
	16.6 nfww		or $2 \times (5.8 + 0.05 + 2.4 + 0.05 + 2.4 + 0.05 + 2.4 + 0.05 + 2.4 + 0.05 + 2.4 + 0.05 $	/		
			A1 16.2 or 16.6 in either If zero scored SC2 for bo answers provided 16.6 nf	answer space th correct rev		

Pa	age 4	Mark Scheme		Syllabus	Paper		
		Cambridge IGCSE – October/November 2015			0580	22	
19		$\sqrt{(-6)^2 - 4(5)(-3)}$ or better seen	B1	If completing the square B1 for $\left(x - \frac{3}{5}\right)^2$ oe			
		if $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ seen then $p = -(-6)$ and $r = 2 \times 5$ -0.38 1.58 cao final answers	B1 B1 B1	B1 for $\frac{3}{5} + \sqrt{\frac{3}{5} + \left(\frac{3}{5}\right)^2}$ or $\frac{3}{5} - \sqrt{\frac{3}{5} + \left(\frac{3}{5}\right)^2}$ oe If B0, SC1 for - 0.4 and 1.6 or - 0.379[795] and 1.579[795] or - 1.58 and 0.38 as final answers or - 0.38 and 1.58 seen in working			
20	(a)		B1 B1				
	(b)	260	3FT	M2FT for $8 \times 10 + 0.5 \times$ or for a fully correct area graph or M1FT for 8×10 or 0 correct area calculation for	calculation for $5 \times 8 \times 45$ or	for one	
21	(a)	12	2	M1 for $\frac{7.2}{x} = \frac{15}{25}$ oe or better eg $7.2 \times \frac{25}{15}$			
	(b)	12.8	3	M2 for $16 \times \sqrt[3]{\frac{192}{375}}$ oe or M1 for $\sqrt[3]{\frac{192}{375}}$ or $\sqrt[3]{\frac{375}{192}}$ o	be or $\left(\frac{16}{y}\right)^3$	$=\frac{375}{192}$ oe	
22	(a)	3.5 nfww	3	M1 for Σfx soi M1 (dep) for \div 24			
	(b)	2 nfww	3	M2FT for $\frac{their 84 + x}{25} = 3$ or M1 for 25 × 3.44	.44 or better		

Page 5 Mark Scheme Cambridge IGCSE – October/November 2015				Syllabus	Paper
	Cambridge IGCSE – Oct	ober/No	vember 2015	0580	22
23 (a)	$\frac{8}{14}$ and $\frac{5}{13}$	1			
	$\frac{6}{13}$ and $\frac{7}{13}$	1			
(b) (i)	$\frac{30}{182}$ oe	2	M1FT for $\frac{6}{14} \times their \frac{5}{13}$		
(ii)	$\frac{126}{182}$ oe	3	M2FT for $1 - \frac{8}{14} \times \frac{7}{13}$ or $\frac{6}{14} \times \frac{5}{13} + \frac{6}{14} \times \frac{8}{13} +$ or $\frac{6}{14} + \frac{8}{14} \times \frac{6}{13}$ oe or M1FT for sum of any $\frac{6}{14} \times \frac{5}{13}$ or $\frac{6}{14} \times \frac{8}{13}$ or $\frac{8}{14}$	two of	