

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	
		0500/40

MATHEMATICS 0580/43

Paper 4 (Extended) October/November 2019

2 hours 30 minutes

Candidates answer on the Question Paper.

Additional Materials: Electronic calculator Geometrical instruments

Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

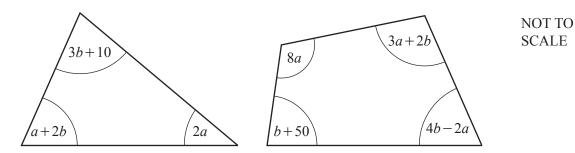
Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


The total of the marks for this paper is 130.

© UCLES 2019

(a)	In a cycling club, the number of members are in the ratio males. The club has 342 females.	: females = 8 : 3.
	(i) Find the total number of members.	
	(ii) Find the percentage of the total number of members that ar	re female.
(b)	The price of a bicycle is \$1020. Club members receive a 15% discount on this price. Find how much a club member pays for this bicycle.	% [1]
(c)	In 2019, the membership fee of the cycling club is \$79.50.	\$[2]
	This is 6% more than last year. Find the increase in the cost of the membership.	
		\$[3]

(d)	Asif cycles a distance of 105 km. On the first part of his journey he cycles 60 km in 2 hours 24 minutes. On the second part of his journey he cycles 45 km at 20 km/h.
	Find his average speed for the whole journey.
	km/h [4]
(e)	Bryan invested \$480 in an account 4 years ago. The account pays compound interest at a rate of 2.1% per year. Today, he uses some of the money in this account to buy a bicycle costing \$430.
	Calculate how much money remains in his account.
	\$[3]
(f)	\$
	When $a = 3$ and $t = 10$, each correct to the nearest integer, calculate the lower bound of the distance, s.
	[2]

2 (a) The diagram shows a triangle and a quadrilateral. All angles are in degrees.

(i) For the triangle, show that 3a+5b=170.

[1]

(ii) For the quadrilateral, show that 9a + 7b = 310.

[1]

(iii) Solve these simultaneous equations. Show all your working.

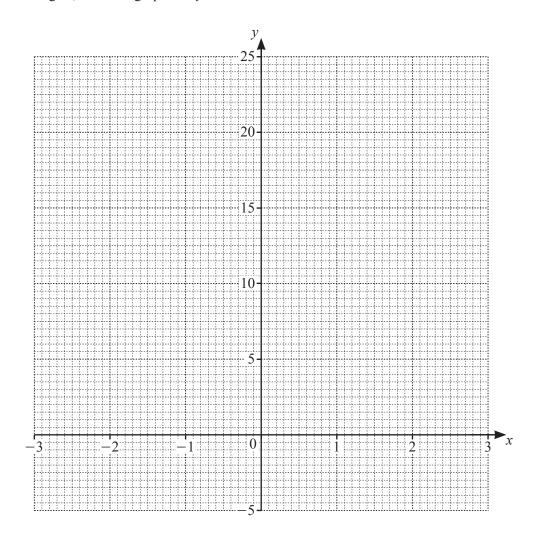
a =	·
a =	

$$b = \dots$$
 [3]

(iv) Find the size of the smallest angle in the triangle.

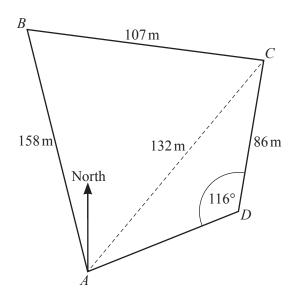
_			_	
	1	1	ı	
	J	I	ı	

(b)	Solve the equation $6x-3=-12$.	
(c)	$x = \dots$ [2] Rearrange $2(4x-y) = 5x-3$ to make y the subject.	2]
(d)	Simplify. $y = \frac{1}{2}$	3]
	r	21


				 [2]
(e)	Simplify.			
		$\frac{x^2 + 5x}{x^2 - 25}$		

3 The table shows some values for $y = x^3 + x^2 - 5x$.

x	-3	-2	-1.5	-1	0	1	1.5	2	2.5	3
у	-3	6	6.4		0		-1.9	2	9.4	


(a) Complete the table. [3]

(b) On the grid, draw the graph of $y = x^3 + x^2 - 5x$ for $-3 \le x \le 3$.

[4]

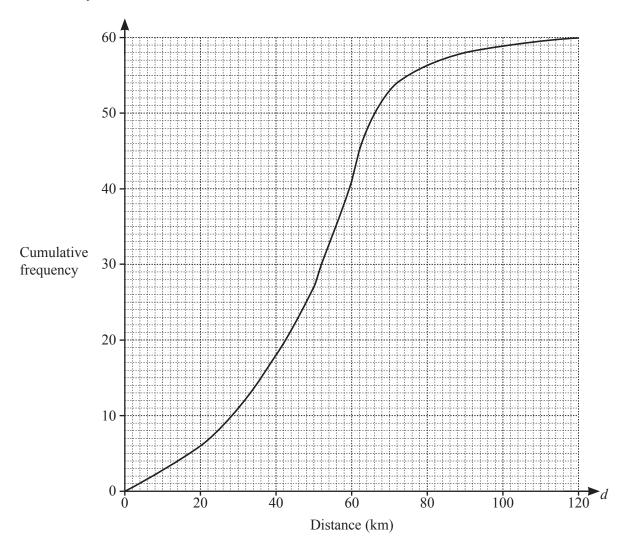
(c)	Use your graph to solve the equation $x^3 + x^2 - 5x = 0$.
(d)	x =
(e)	Write down the largest value of the integer, k , so that the equation $x^3 + x^2 - 5x = k$ has three solutions for $-3 \le x \le 3$.
	$k = \dots $ [1]

NOT TO SCALE

The diagram shows a field, ABCD, on horizontal ground.

(a) There is a vertical post at C. From B, the angle of elevation of the top of the post is 19° .

Find the height of the post.


m 2	1	m [2
-------	---	-----	---

(b) Use the cosine rule to find angle *BAC*.

Angle
$$BAC =$$
 [4]

(c)	Use the sine rule to find angle <i>CAD</i> .		
(d)	Calculate the area of the field.	Angle <i>CAD</i> =	[3]
(e)	The bearing of D from A is 070°. Find the bearing of A from C .	m ²	[3]
			[2]

5 The cumulative frequency diagram shows information about the distance, d km, travelled by each of 60 male cyclists in one weekend.

(a) Use the cumulative frequency diagram to find an estimate of

<	. 4	4.
(i)	the	median

..... km [1]

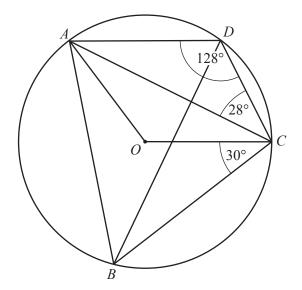
(ii) the lower quartile,

..... km [1]

(iii) the interquartile range.

..... km [1]

			11	
(b)	For the same week is 40 km.	kend, the interquartile ra	ange for the distances travelled	by a group of female cyclists
		ent comparing the distribed distances travelled by the	ution of the distances travelled he females.	by the males with the
				[1]
(c)	A male cyclist is o	chosen at random.		
	Find the probabili	ity that he travelled more	e than 50 km.	
				[2]
(d)	(i) Use the cum	ulative frequency diagra	m to complete this frequency to	
		Distance (dkm)	Number of male cyclists	
		$0 < d \le 40$	18	
		40 < <i>d</i> ≤ 50	9	
		50 < d ≤ 60		
		60 < d ≤ 70		
		$70 < d \le 90$		


[2]

(ii) Calculate an estimate of the mean distance travelled.

 $90 < d \le 120$

..... km [4]

6 (a)

NOT TO SCALE

In the diagram, A, B, C and D lie on the circle, centre O. Angle $ADC = 128^{\circ}$, angle $ACD = 28^{\circ}$ and angle $BCO = 30^{\circ}$.

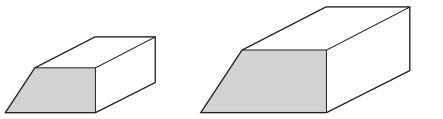
(i) Show that obtuse angle $AOC = 104^{\circ}$. Give a reason for each step of your working.

[3]

(ii) Find angle BAO.

Angle BAO = [2]

(iii) Find angle ABD.


Angle $ABD = \dots$ [1]

(iv) The radius, OC, of the circle is 9.6 cm.

Calculate the total perimeter of the sector *OADC*.

..... cm [3]

(b)

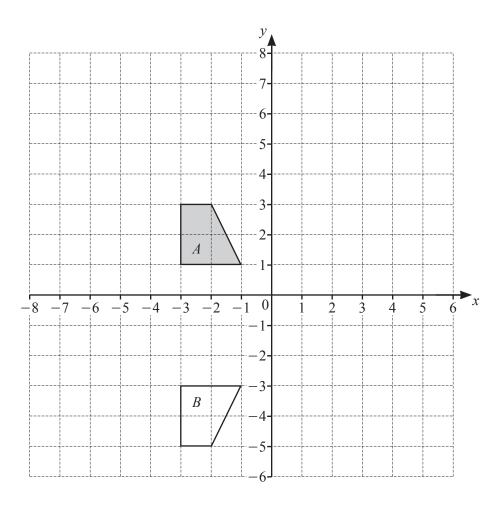
NOT TO SCALE

The diagram shows two mathematically similar solid metal prisms.

The volume of the smaller prism is 648 cm³ and the volume of the larger prism is 2187 cm³.

The area of the cross-section of the smaller prism is 36 cm².

(i) Calculate the area of the cross-section of the larger prism.


..... cm² [3]

(ii) The larger prism is melted down into a sphere.

Calculate the radius of the sphere.

[The volume, V, of a sphere with radius r is $V = \frac{4}{3}\pi r^3$.]

..... cm [3]

(a) Describe fully the single transformation that maps shape A onto sha	ıpe	٠.	1	5	3.	•	
--	-----	----	---	---	----	---	--

(b) On the grid, draw the image of

- (i) shape A after a translation by the vector $\begin{pmatrix} -3\\4 \end{pmatrix}$, [2]
- (ii) shape A after a rotation through 180° about (0, 0), [2]
- (iii) shape A after an enlargement, scale factor 2, centre (-7, 0). [2]

8	(a)	A bag contains 4 red marbles and 2 yellow marbles. Behnaz picks two marbles at random without replacement.	
		Find the probability that	
		(i) the marbles are both red,	
			[2]
		(ii) the marbles are not both red.	
			[1]
	(b)	Another bag contains 5 blue marbles and 2 green marbles. Bryn picks one marble at random without replacement. If this marble is not green, he picks another marble at random without replacement. He continues until he picks a green marble.	
		Find the probability that he picks a green marble on his first, second or third attempt.	
			[4]

9	f(x) = 2x - 3	$g(x) = 9 - x^2$	$h(x) = 3^x$
(a) Fin (i)	d f(4),		
(ii)	hg(3),		[1]
(iii)	g(2x) in its simplest form,		[2]
(iv)	fg(x) in its simplest form.		[1]
(b) Fin	$d f^{-1}(x)$.		[2]
(c) Fin	dx when 5f(x) = 3.	f^{-1}	$f(x) = \dots $ [2]

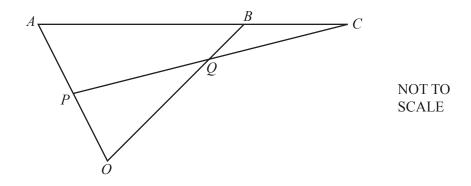
 $x = \dots$ [2]

1	\mathbf{q}	Solve the	equation	$\alpha f(r) =$	_16
١	u,	SOLVE III	cquation	$g_1(x)$	10.

$$x =$$
 or $x =$ [4]

(e) Find x when $h^{-1}(x) = -2$.

$$x = \dots$$
 [1]


10 Solve.

$$\frac{1}{x} - \frac{2}{x+1} = 3$$

Show all your working and give your answers correct to 2 decimal places.

$$x =$$
 or $x =$ [7]

© UCLES 2019

OAB is a triangle and *ABC* and *PQC* are straight lines. $\overrightarrow{OA} = 4\mathbf{a}$ and $\overrightarrow{OB} = 8\mathbf{b}$.

	(~)	Lind	:	tarma	of a	and/anl	h :.	ita		1004	forma
((a)	, riiiu,	, 111	terms	or a	and/or l	v, 11	1 115	SIIIIL	nest	101111

(i) \overrightarrow{AB} ,

→	
AB =	[1]
111	 1 * 1

(ii) \overrightarrow{OQ} ,

$$\overrightarrow{OQ} = \dots$$
 [1]

(iii) \overrightarrow{PQ} .

$$\overrightarrow{PQ} = \dots$$
 [1]

(b) By using vectors, find the ratio *AB* : *BC*.

.....[3]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.