



## **Cambridge International Examinations**

Cambridge International General Certificate of Secondary Education

| CANDIDATE<br>NAME     |                       |                        |                    |
|-----------------------|-----------------------|------------------------|--------------------|
| CENTRE<br>NUMBER      |                       | CANDIDATE<br>NUMBER    |                    |
| MATHEMATICS           |                       |                        | 0580/41            |
| Paper 4 (Extended)    |                       |                        | May/June 2014      |
|                       |                       |                        | 2 hours 30 minutes |
| Candidates answer of  | n the Question Paper. |                        |                    |
| Additional Materials: | Electronic calculator | Geometrical instrument | ts                 |

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown below that question.

Tracing paper (optional)

Electronic calculators should be used.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For  $\pi$ , use either your calculator value or 3.142.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [ ] at the end of each question or part question.

The total of the marks for this paper is 130.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.



| 1 | <b>A</b> — | 3  | 2   | $\mathbf{B} = (-2$ | 5) | c -   | $\left(-2\right)$ | D = | 2 | 0 | ١ |
|---|------------|----|-----|--------------------|----|-------|-------------------|-----|---|---|---|
| 1 | A –        | -1 | 1 / | <b>B</b> - (-2     | 3) | C - ( | 5)                | D – | 0 | 2 |   |

(a) Work out, when possible, each of the following.

If it is not possible, write 'not possible' in the answer space.

(i) 2A

Answer(a)(i) [1]

(ii)  $\mathbf{B} + \mathbf{C}$ 

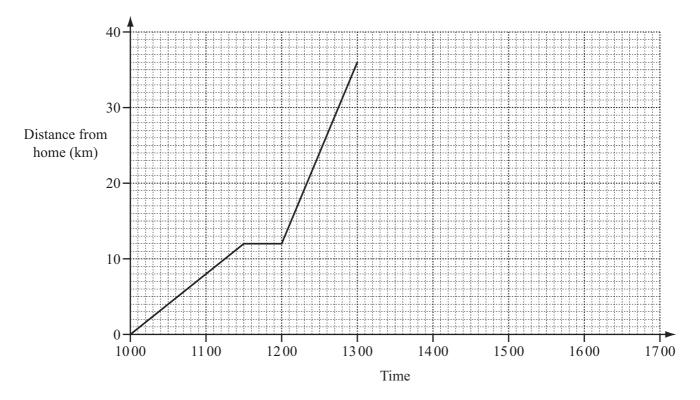
Answer(a)(ii) [1]

(iii) AD

Answer(a)(iii) [2]

(iv)  $A^{-1}$ , the inverse of A.

Answer(a)(iv) [2]


**(b)** Explain why it is not possible to work out **CD**.

(c) Describe fully the **single** transformation represented by the matrix **D**.

Answer(c) .....

.....[3]

2 Ali leaves home at 10 00 to cycle to his grandmother's house. He arrives at 13 00. The distance-time graph represents his journey.



(a) Calculate Ali's speed between 1000 and 1130. Give your answer in kilometres per hour.

| Answer(a) |  | km/h | [2] |  |
|-----------|--|------|-----|--|
|-----------|--|------|-----|--|

**(b)** Show that Ali's average speed for the whole journey to his grandmother's house is 12 km/h. *Answer(b)* 

[2]

(c) Change 12 kilometres per hour into metres per minute.

*Answer(c)* ...... m/min [2]

(d) Ali stays for 45 minutes at his grandmother's house and then returns home. He arrives home at 1642.

Complete the distance-time graph.

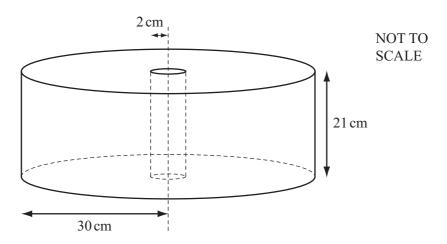
[2]

3 (a) The running costs for a papermill are \$75246.

This amount is divided in the ratio labour costs: materials = 5:1.

Calculate the labour costs.

(b) In 2012 the company made a profit of \$135 890. In 2013 the profit was \$150 675.


Calculate the percentage increase in the profit from 2012 to 2013.

*Answer(b)* ...... % [3]

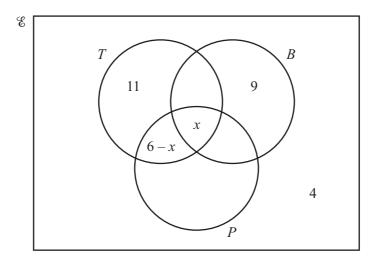
(c) The profit of \$135 890 in 2012 was an increase of 7% on the profit in 2011.

Calculate the profit in 2011.

(d)



Paper is sold in cylindrical rolls.


There is a wooden cylinder of radius 2 cm and height 21 cm in the centre of each roll.

The outer radius of a roll of paper is 30 cm.

(i) Calculate the volume of paper in a roll.

 $Answer(d)(i) \dots cm^3 [3]$ 

| (ii) |     | e paper is cut into sheets which measure 21 cm by 29.7 cm. e thickness of each sheet is 0.125 mm. |
|------|-----|---------------------------------------------------------------------------------------------------|
|      | (a) | Change 0.125 millimetres into centimetres.                                                        |
|      |     | Answer(d)(ii)(a) cm [1]                                                                           |
|      | (b) | Work out how many whole sheets of paper can be cut from a roll.                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     |                                                                                                   |
|      |     | $Answer(d)(ii)(b) \qquad [4]$                                                                     |



In the Venn diagram,  $\mathscr{E} = \{\text{children in a nursery}\}\$ 

 $B = \{\text{children who received a book for their birthday}\}\$ 

 $T = \{\text{children who received a toy for their birthday}\}\$ 

 $P = \{\text{children who received a puzzle for their birthday}\}$ 

x children received a book and a toy and a puzzle. 6 children received a toy and a puzzle.

(a) 4 children received a book and a toy.

5 children received a book and a puzzle.

7 children received a puzzle but not a book and not a toy.

Complete the Venn diagram above.

[3]

**(b)** There are 40 children in the nursery.

Using the Venn diagram, write down and solve an equation in x.

Answer(b)

[3]

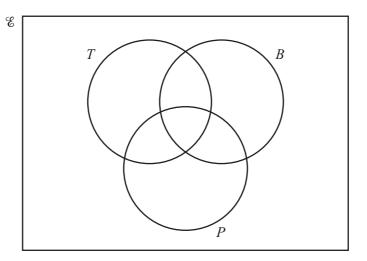
| ( | $(\mathbf{c})$ | Work   | out |
|---|----------------|--------|-----|
| М | •              | , MOIN | Out |

(i) the probability that a child, chosen at random, received a book but not a toy and not a puzzle,

| Answer( | (c) | )( | i | ) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | [ | 1 | 1 |  |
|---------|-----|----|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|--|
|---------|-----|----|---|---|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|---|---|--|

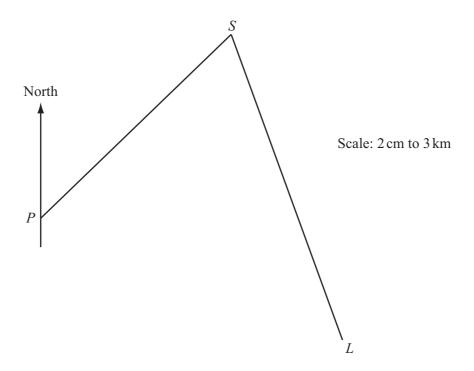
(ii) the number of children who received a book and a puzzle but not a toy,

*Answer(c)*(ii) ......[1]


(iii) n(B),

(iv)  $n(B \cup P)$ ,

*Answer(c)*(iv) ......[1]


(v)  $n(B \cup T \cup P)'$ .

(d)



Shade the region  $B \cap (T \cup P)'$ .

[1]



In the scale drawing, P is a port, L is a lighthouse and S is a ship. The scale is 2 centimetres represents 3 kilometres.

(a) Measure the bearing of S from P.

| Answer(a) |  |
|-----------|--|
|           |  |
|           |  |

**(b)** Find the actual distance of S from L.

Answer(b) ...... km [2]

(c) The bearing of L from S is  $160^{\circ}$ .

Calculate the bearing of S from L.

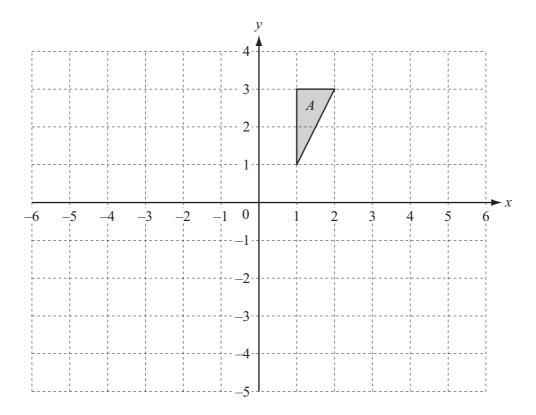
Answer(c) ......[1]

| (d)        | Work ou  | at the scale of the map in the form $1:n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          | $A_{ij} = A_{ij} = A$ | [2]              |
|            |          | <i>Answer(d)</i> 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . [2]            |
| (e)        | A boat E | B is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|            | •        | equidistant from $S$ and $L$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|            | and<br>• | equidistant from the lines PS and SL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|            | On the d | diagram, using a straight edge and compasses only, construct the position of B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [5]              |
| <b>(f)</b> | The ligh | nthouse stands on an island of area 1.5 cm <sup>2</sup> on the scale drawing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
|            | Work ou  | ut the actual area of the island.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |          | Answer(f) km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>2</sup> [2] |
|            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |

6 (a) A square spinner is biased.

The probabilities of obtaining the scores 1, 2, 3 and 4 when it is spun are given in the table.

| Score       | 1   | 2   | 3   | 4   |
|-------------|-----|-----|-----|-----|
| Probability | 0.1 | 0.2 | 0.4 | 0.3 |


| ( | i) | Work out the | probability that o | on one spin the | score is 2 or 3  |
|---|----|--------------|--------------------|-----------------|------------------|
| ١ | L) | WOIK Out the | probability mat b  | in one spin the | SCOIC 15 2 01 3. |

| (ii)  | Answer(a)(i)  | [2] |
|-------|---------------|-----|
| (iii) | Answer(a)(ii) | [1] |

**(b)** In a bag there are 7 red discs and 5 blue discs. From the bag a disc is chosen at random and not replaced. A second disc is then chosen at random.

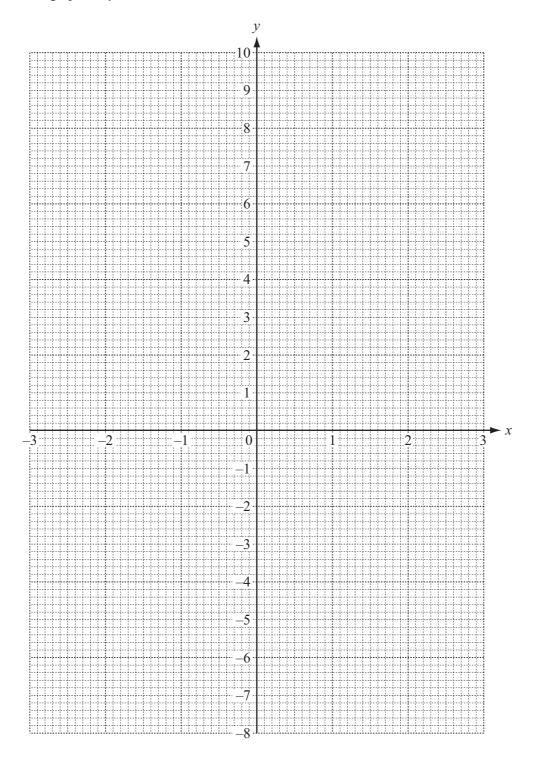
Work out the probability that at least one of the discs is red. Give your answer as a fraction.

*Answer(b)* ...... [3]



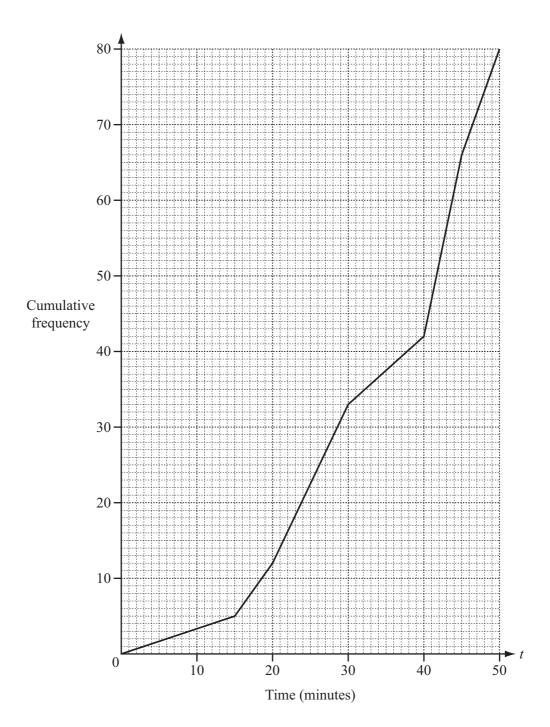
(a) On the grid,

(i) draw the image of shape A after a translation by the vector 
$$\begin{pmatrix} -5 \\ -4 \end{pmatrix}$$
, [2]


- (ii) draw the image of shape A after a rotation through 90° clockwise about the origin. [2]
- **(b)** (i) On the grid, draw the image of shape A after the transformation represented by the matrix  $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$

8 (a) Complete the table of values for  $y = x^3 - 3x + 1$ .

| х | -2.5   | -2 | -1.5 | -1 | -0.5 | 0 | 0.5    | 1  | 1.5    | 2 | 2.5   |
|---|--------|----|------|----|------|---|--------|----|--------|---|-------|
| у | -7.125 | -1 |      | 3  |      | 1 | -0.375 | -1 | -0.125 | 3 | 9.125 |


[2]

**(b)** Draw the graph of  $y = x^3 - 3x + 1$  for  $-2.5 \le x \le 2.5$ .



[4]

| (c) | By drawing a suitable tangent, estimate the gradient of the curve at the point where $x = 2$ . |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     |                                                                                                |  |  |  |  |  |  |
|     |                                                                                                |  |  |  |  |  |  |
|     |                                                                                                |  |  |  |  |  |  |
|     |                                                                                                |  |  |  |  |  |  |
|     |                                                                                                |  |  |  |  |  |  |
|     | $Answer(c) \qquad [3$                                                                          |  |  |  |  |  |  |
| (4) | Use your graph to solve the equation $x^3 - 2x + 1 = 1$                                        |  |  |  |  |  |  |
| (u) | Use your graph to solve the equation $x^3 - 3x + 1 = 1$ .                                      |  |  |  |  |  |  |
|     | $Answer(d) x = \dots \qquad \text{or } x = \dots \qquad \text{or } x = \dots \qquad [2]$       |  |  |  |  |  |  |
| (e) | Use your graph to complete the inequality in k for which the equation                          |  |  |  |  |  |  |
|     | $x^3 - 3x + 1 = k$ has three different solutions.                                              |  |  |  |  |  |  |
|     | $Answer(e) \dots < k < \dots [2]$                                                              |  |  |  |  |  |  |
|     |                                                                                                |  |  |  |  |  |  |



The times (t minutes) taken by 80 people to complete a charity swim were recorded. The results are shown in the cumulative frequency diagram above.

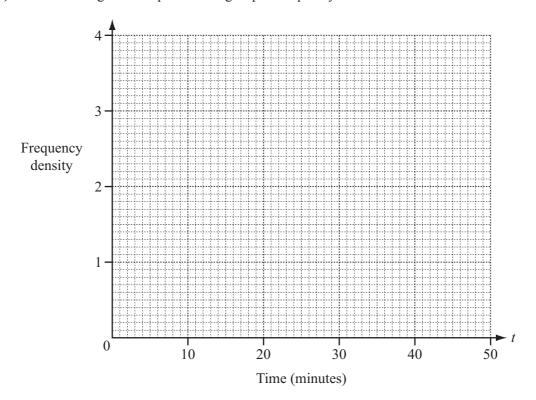
(a) Find

(i) the median,

Answer(a)(i) ..... min [1]

(ii) the inter-quartile range,

Answer(a)(ii) ..... min [2]


(iii) the 70th percentile.

**(b)** The times taken by the 80 people are shown in this grouped frequency table.

| Time (t minutes) | 0 < t ≤ 20 | $20 < t \le 30$ | 30 < t ≤ 45 | 45 < <i>t</i> ≤ 50 |
|------------------|------------|-----------------|-------------|--------------------|
| Frequency        | 12         | 21              | 33          | 14                 |

(i) Calculate an estimate of the mean time.

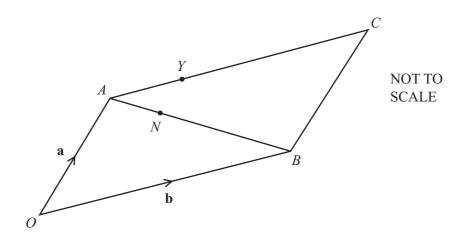
(ii) Draw a histogram to represent the grouped frequency table.



[4]

| 10 | (a)     | f(x) = 2x - 3                              | $g(x) = \frac{1}{x+1} + 2$   | $h(x) = 3^x$ |     |
|----|---------|--------------------------------------------|------------------------------|--------------|-----|
|    | (i)     | Work out f(4).                             |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            | Answer(a)(i)                 | )            | [1] |
|    | (ii)    | Work out $fh(-1)$ .                        |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            |                              |              |     |
|    | <b></b> |                                            | Answer(a)(ii)                |              | [2] |
|    | (111)   | Find $f^{-1}(x)$ , the inverse of $f(x)$ . |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            | $Answer(a)(iii) f^{-1}(x) =$ | ·            | [2] |
|    | (iv)    | Find $ff(x)$ in its simplest form.         |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            |                              |              |     |
|    |         |                                            | Answer(a)(iv) ff(x) =        | ·            | [2] |

|                |                                               | 17                      |                    |              |                |       |
|----------------|-----------------------------------------------|-------------------------|--------------------|--------------|----------------|-------|
| (v)            | Show that the equation                        | f(x) = g(x) simplifies  | to $2x^2$          | -3x-6=0.     |                |       |
|                | Answer(a)(v)                                  |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                | [3]   |
| (vi)           |                                               |                         |                    |              |                |       |
|                | Give your answers correshow all your working. | ect to 2 decimal places | 5.                 |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                | $x^2 - 3x + 2$                                | Answ                    | <i>ver(a)</i> (vi) | ) <i>x</i> = | or $x = \dots$ | . [4] |
| <b>(b)</b> Sim | nplify $\frac{x^2 - 3x + 2}{x^2 + 3x - 10}$ . |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         |                    |              |                |       |
|                |                                               |                         | Ar                 | ıswer(b)     |                | [4]   |


| 11 | (a) | $\overrightarrow{PQ}$ | $\overrightarrow{PQ} = \begin{pmatrix} -3\\4 \end{pmatrix}$ |  |  |
|----|-----|-----------------------|-------------------------------------------------------------|--|--|
|    |     | (i)                   | P is the point $(-2, 3)$ .                                  |  |  |

Work out the co-ordinates of Q.

(ii) Work out  $|\overrightarrow{PQ}|$ , the magnitude of  $\overrightarrow{PQ}$ .

Answer(a)(ii) ......[2]

**(b)** 



*OACB* is a parallelogram.

$$\overrightarrow{OA} = \mathbf{a}$$
 and  $\overrightarrow{OB} = \mathbf{b}$ .

$$AN: NB = 2:3$$
 and  $AY = \frac{2}{5}AC$ .

- (i) Write each of the following in terms of **a** and/or **b**. Give your answers in their simplest form.
  - (a)  $\overrightarrow{ON}$

$$Answer(b)(i)(a) \overrightarrow{ON} =$$
 [2]

**(b)**  $\overrightarrow{NY}$ 

$$Answer(b)(i)(b) \overrightarrow{NY} =$$
 [2]

(ii) Write down two conclusions you can make about the line segments NY and BC.

| Answer(b)(ii) |    |
|---------------|----|
|               | ۲٦ |

## **BLANK PAGE**

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.