Step 1: Move constant \[ \\ x^2 + 6x = -5 \\ \] Step 2: Add \( \left( \frac{6}{2} \right)^2 = 9 \) to both sides ; \[ \\ x^2 + 6x + 9 = -5 + 9 \\ \] Step 3: \[ (x + 3)^2 = 4 \] Step 4: \[x + 3 = \pm 2 \] Answers: \[x = -1 \space\space or \space\space x = -5 \]

Step 1: \[ \\ x^2 – 4x = -1 \\ \] Step 2: Add \( \left( \frac{-4}{2} \right)^2 = 4 \) to both sides ; \[ \\ x^2 – 4x + 4 = -1 + 4 \\ \] Step 3: \[ (x – 2)^2 = 3 \] Step 4: \[ x – 2 = \pm \sqrt{3} \] Answers: \[ x = 2 + \sqrt{3} \space\space or \space\space x = 2 – \sqrt{3} \]
Step 1: Divide by 2 \[ x^2 + 4x = \frac{3}{2} \] Step 2: Add \(\left(\frac{4}{2}\right)^2 = 4\) \[ x^2 + 4x + 4 = \frac{3}{2} + 4 = \frac{11}{2} \] Step 3: \[ (x + 2)^2 = \frac{11}{2} \] Step 4: \[ x = -2 \pm \sqrt{\frac{11}{2}} \]

Step 1: Divide by 3 \[ x^2 – 4x = -\frac{7}{3} \] Step 2: Add \(\left(\frac{-4}{2}\right)^2 = 4\) \[ x^2 – 4x + 4 = -\frac{7}{3} + 4 = \frac{5}{3} \] Step 3: \[ (x – 2)^2 = \frac{5}{3} \] Step 4: \[ x = 2 \pm \sqrt{\frac{5}{3}} \]

Step 1: \[ x^2 + \frac{3}{2}x = \frac{5}{4} \] Step 2: Add \(\left( \frac{3}{4} \right)^2 = \frac{9}{16}\) \[\\LHS: \space\space x^2 + \frac{3}{2}x + \frac{9}{16} = \frac{5}{4} + \frac{9}{16} \\ RHS: \frac{20}{16} + \frac{9}{16} = \frac{29}{16} \] Step 3: \[ \left( x + \frac{3}{4} \right)^2 = \frac{29}{16} \] Step 4: \[ x = -\frac{3}{4} \pm \sqrt{\frac{29}{16}} = -\frac{3}{4} \pm \frac{\sqrt{29}}{4} \]