\[x=\dfrac{-b\pm \sqrt{b^{2}-4ac}}{2a}\]

\[\begin{aligned}x=\dfrac{-\left( -5\right) \pm \sqrt{\left( -5\right) ^{2}-4\left( 1\right) \left( 6\right) }}{2\left( 1\right) }=\dfrac{5\pm \sqrt{25-24}}{2}=\dfrac{5\pm \sqrt{1}}{2}=\dfrac{5\pm 1}{2}\end{aligned}\]

\[ x = \frac{-4 \pm \sqrt{16 – 16}}{2} = \frac{-4}{2} = -2 \]
\[ x = \frac{3 \pm \sqrt{9 + 40}}{4} = \frac{3 \pm \sqrt{49}}{4} = \frac{3 \pm 7}{4} \] \[ x = \frac{10}{4} = 2.5 \quad \text{or} \quad x = \frac{-4}{4} = -1 \]

\[x = \frac{-2 \pm \sqrt{4 – 20}}{2} = \frac{-2 \pm \sqrt{-16}}{2} \\ x = \frac{-2 \pm 4i}{2} = -1 \pm 2i\]

\[x = \frac{-4 \pm \sqrt{16 – 24}}{6} = \frac{-4 \pm \sqrt{-8}}{6} = \frac{-4 \pm 2\sqrt{2}i}{6} \\ x = \frac{-2 \pm \sqrt{2}i}{3}\]

\[x = \frac{120 \pm \sqrt{14400 – 14000}}{10} = \frac{120 \pm \sqrt{400}}{10} \\ x = \frac{120 \pm 20}{10} = 14 \text{ or } 10\]

\[x = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}\]

👉 Click to Download the Quadratic Formula Worksheet (PDF)